

DESIGNING PRECAST for Climate, Quality, Durability

PEPSCON 2017

CURING CONCRETE

Concrete's strength and durability is determined largely by how it is cured YET IT IS THE MOST NEGLECTED ASPECT OF CONCRETE

WHAT IS IT

 Curing is a procedure that is adopted to promote the hardening of concrete under conditions of humidity and temperature which are conducive for the HYDRATION reaction to continue

HYDRATION REACTION

• Cement + Water \rightarrow CSH + Ca(OH)₂

Cementitious Gel (BINDER)

In order to achieve complete HYDRATION it is **ESSENTIAL** that moisture does not evaporate from the product.

CURING

PLASTIC FILM

1) Maintaining / reducing loss of mixing water in concrete

Saturated wet coverings

 Applying membraneforming curing compounds

2) Accelerating strength gain using heat

Electrical heated forms or pads

Insulation blankets

Live steam Steam at atm. pressure (Temp. should be < 60-70°C)

HOW LONG

- American Concrete Institute (ACI) Committee 301 recommends a min. curing period corresponding to concrete attaining 70% of the specified compressive strength.
- The commonly specified 7-day curing corresponds to approx. 70% of the specified compr. Strengths
- This can be reached sooner when concrete cures at higher temperatures.

Criteria for GOOD CONCRETE

Reasons for CURING

- 1. Beside achieving STRENGTH
- 2. DURABILITY :
 - i. better surface hardness
 - ii. better surface wear and abrasion resistance
 - iii. Water tightness to prevent ingress of moisture & other deleterious compounds which cause corrosion
- 3. SERVICEABILITY : – Prevent CRAZING, DUSTING & SCALING

EFFECT OF CURING DURATION

EFFECT OF CURING TEMPERATURE

on COMPRESSIVE STRENGTH DEVELOPMENT

 Higher curing temperatures promote an early strength gain in concrete but may decrease its 28-day strength

PLANT 1

N RESEARCH TECHNOLOGIES

PLASTIC SHRINKAGE Evaporation rate ~ 1 kg/m²/hr

1 m³ Concrete : 180 kg water 1 cm layer /m2 : 1.8 kg

1 3/1

PLANT 2

PLANT 3

Missing elements of Durability :

Lack of good curing practice

• No FLY ASH (ABDUN NUR)

V. High contents of Cement – High Heat of Hydration, Internal microcracking from temp.stresses
& Drying shrinkage

CARBONATION

Spalling

Exposed surface

DESIGN for INDIAN Climate

Material	Thermal resistance R m ² .K/W	Thermal Conductance 1/R	
Brick 10"	0.3	3.3	
Poured Concrete 6"	0.084	11.9	
Expanded Polystyrene 2"	0.65	1.5	
Extruded Polystyrene 2"	0.9	1.1	

	Material	Thermal resistance R m ² .K/W	Thermal Conductance 1/R	
INSULATION	Brick 10"	0.3	3.3	
SANDWICH	Poured Concrete 6"	0.084	11.9	
PANELS	Sandwich panel 2"RCC + 1"XPS + 4"RCC	0.984	1.02	
	Sandwich panel 2"RCC + 2"XPS + 4"RCC	1.984	0.50	
		S. 1		

WE `RE TALKING ABOUT ?

